Sensors to follow in real time the tomato and apple quality attributes during processing in puree

VILLAMARIN SPATARO A. (1), PAGE D. (1), BUREAU S. (1), LECA A. (1), CATTERNOZ T. (2), RELING P. (1), PIETRI E. (1) 1 INRAE PACA UMR 408 SQPOV, Avignon, France

2 INRAE UMR 0782 SayFood, Saclay, France

The interest of real-time measurements for F&V processing:

Fruit and Vegetables (F&V) are reactive with **variable** properties and compositions depending on species and varieties, maturity stages, processing conditions... Developing a smart processing device able to **live-diagnose** the change during **processing** is a challenging objective for controlling quality and optimizing processes.

Our project aims at **customizing** a cooking and grinding pilot for R&D. It allows thermo-mechanical processes equipped with a double-wall tank heated by steam, in which pressure/vacuum and product temperature are continuously **monitored** and **controlled** (®RoboQbo, Parma, Italy). Our first achievement was to integrate both, near infrared (NIR) and visible **spectroscopy** as optical sensors and a device for **trapping** volatile organic compound (**VOC**) in the cooking vapor.

Visible and near-infrared spectroscopic sensors:

Commercial NIR and visible spectrometers were connected to the pilot through an optical fiber, in order to register the product light **adsorption** during processing. As F&V adsorption properties vary according to their composition (water/sugar content, color), the spectral properties were studied in relationship with the **modification of composition** and texture of the matrices during processing in order to test and ultimately validate sensors for later use to **optimize** processing conditions.

VOC sampling and calibration for diagnostics:

A cooling and drying device was designed for sampling aliquots of cooking vapors through Tenax ® VOC traps during processing. This device was associated with another "static" device allowing calibration and quantification of VOC content by **gaz-chromatography mass-spectrometry**. When used "in tandem", we were able to monitor the vapor composition during cooking of F&V. In order to quantitatively assess changes, **automated** condensation-injection systems are under development.

The "static" device is already automated allowing for a timely valve-controlled nitrogen flux pushing headspace's VOCs through a Tenax® trap.

Further development of this pilot will facilitate the integration of the signals and composition for establishing **models to predict** changes throughout processing.